Berry Phase & Chern Numbers

Daniel Mandragona

Texas A&M University

February 11, 2025

1/19

• Consider a family of self-adjoint complex-valued matrices, $H(\vec{p})$, parameterized by some vector \vec{p} .

- Consider a family of self-adjoint complex-valued matrices, $H(\vec{p})$, parameterized by some vector \vec{p} .
- Suppose we have a loop in the parameter space, that is $\vec{\mathbf{p}}(t)$ where $\vec{\mathbf{p}}(t_{init}) = \vec{\mathbf{p}}(t_{final})$.

2/19

- Consider a family of self-adjoint complex-valued matrices, $H(\vec{p})$, parameterized by some vector \vec{p} .
- Suppose we have a loop in the parameter space, that is $\vec{\mathbf{p}}(t)$ where $\vec{\mathbf{p}}(t_{init}) = \vec{\mathbf{p}}(t_{final})$.
- Look at how the ground energy eigenstate (normalized) changes along this loop, i.e. try to make a smooth section.

- Consider a family of self-adjoint complex-valued matrices, $H(\vec{p})$, parameterized by some vector \vec{p} .
- Suppose we have a loop in the parameter space, that is $\vec{\mathbf{p}}(t)$ where $\vec{\mathbf{p}}(t_{init}) = \vec{\mathbf{p}}(t_{final})$.
- Look at how the ground energy eigenstate (normalized) changes along this loop, i.e. try to make a smooth section.

• We get that:
$$|\psi(t_{init})
angle=e^{i heta}\,|\psi(t_{final})
angle.$$

- Consider a family of self-adjoint complex-valued matrices, $H(\vec{p})$, parameterized by some vector \vec{p} .
- Suppose we have a loop in the parameter space, that is $\vec{\mathbf{p}}(t)$ where $\vec{\mathbf{p}}(t_{init}) = \vec{\mathbf{p}}(t_{final})$.
- Look at how the ground energy eigenstate (normalized) changes along this loop, i.e. try to make a smooth section.
- We get that: $|\psi(t_{init})
 angle = e^{i heta} |\psi(t_{final})
 angle.$
- Berry Phase is the total amount of phase accumulated by the loop.

Berry Phase (Discrete Formulation)

Consider *n*-many unit quantum states arranged in a loop as such:

3/19

Berry Phase (Discrete Formulation)

Consider *n*-many unit quantum states arranged in a loop as such:

Berry Phase

We may define the Berry Phase as:

$$BP := -\arg\left[\langle u_0 | u_1 \rangle \langle u_1 | u_2 \rangle \cdots \langle u_{N-1} | u_0 \rangle\right]$$
(1)

Daniel Mandragona (Texas A&M University)

Berry Phase & Chern Numbers

• Imagine you are driving a car at 60MPH.

- Imagine you are driving a car at 60MPH.
- A *gauge transformation* would be to switch your speedometer to kilometers per hour.

4/19

- Imagine you are driving a car at 60MPH.
- A *gauge transformation* would be to switch your speedometer to kilometers per hour.
- The numbers will be different, yet nothing changed about your *driving experience*.

• A gauge transformation in our setting is $|u_i\rangle \mapsto e^{i\beta_i} |u_i\rangle$.

э

5/19

- A gauge transformation in our setting is $|u_i\rangle \mapsto e^{i\beta_i} |u_i\rangle$.
- BP is a gauge independent quantity.

- A gauge transformation in our setting is $|u_i\rangle \mapsto e^{i\beta_i} |u_i\rangle$.
- BP is a gauge independent quantity.

B.P. Gauge Independence

Applying the gauge transformation to every state:

$$BP := -\arg\left[\left\langle u_{0}|u_{1}\right\rangle\left\langle u_{1}|u_{2}\right\rangle\cdots\left\langle u_{n-1}|u_{0}\right\rangle\right]$$

$$\mapsto -\arg\left[\left(e^{i\left(-\beta_{0}+\beta_{1}-\beta_{1}+\beta_{2}-\beta_{2}+\cdots+\beta_{0}\right)}\left\langle u_{0}|u_{1}\right\rangle\left\langle u_{1}|u_{2}\right\rangle\cdots\left\langle u_{n-1}|u_{0}\right\rangle\right]$$

$$= -\arg\left[e^{0}\left\langle u_{0}|u_{1}\right\rangle\left\langle u_{1}|u_{2}\right\rangle\cdots\left\langle u_{n-1}|u_{0}\right\rangle\right]$$

$$= BP$$

• Consider now a 2D lattice of these states:

Image: Image:

3

• Consider now a 2D lattice of these states:

• Let's calculate the Berry Phase of the loop along the boundary.

• Consider now a 2D lattice of these states:

• Let's calculate the Berry Phase of the loop along the boundary.

- Alt. Approach: Add up BP of the enclosed plaquettes.
 - Each internal edges is included twice with opposite orientations.
 - The BP for a plaquette, \Box , is called *Berry Flux*, denoted as F_{\Box} .

Chern Number

• Summarizing this, we get:

$$exp(-iBP) = exp\left(-i\sum_{\Box}F_{\Box}\right)$$

문 논 문

(2)

Chern Number

• Summarizing this, we get:

$$exp(-iBP) = exp(-i\sum_{\Box}F_{\Box})$$

• Does this imply $BP = \sum_{\Box} F_{\Box}$?

э

(2)

Chern Number

• Summarizing this, we get:

$$exp(-iBP) = exp\left(-i\sum_{\Box}F_{\Box}\right)$$
(2)

• Does this imply $BP = \sum_{\Box} F_{\Box}$?

1

• No. LHS takes the complex log one time vs. the RHS at each plaquette.

• Summarizing this, we get:

$$exp(-iBP) = exp\left(-i\sum_{\Box}F_{\Box}\right)$$
(2)

• Does this imply $BP = \sum_{\Box} F_{\Box}$?

1

- No. LHS takes the complex log one time vs. the RHS at each plaquette.
- The true equality is then:

$$BP = \sum_{\Box} F_{\Box} + 2\pi Q$$

• Summarizing this, we get:

$$exp(-iBP) = exp\left(-i\sum_{\Box}F_{\Box}\right)$$
(2)

• Does this imply $BP = \sum_{\Box} F_{\Box}$?

1

- No. LHS takes the complex log one time vs. the RHS at each plaquette.
- The true equality is then:

$$BP = \sum_{\Box} F_{\Box} + 2\pi Q$$

• This number Q is the Chern Number.

•
$$\ln \langle u_{\lambda} | u_{\lambda+d\lambda} \rangle = \ln \langle u_{\lambda} | (|u_{\lambda}\rangle + d\lambda | \partial_{\lambda} u_{\lambda} \rangle + ...) \approx d\lambda \langle u_{\lambda} | \partial_{\lambda} u_{\lambda} \rangle$$

• Since: $\lim_{x \to 0} \ln(1+x)/x = 1$.

문 논 문

•
$$\ln \langle u_{\lambda} | u_{\lambda+d\lambda} \rangle = \ln \langle u_{\lambda} | (|u_{\lambda}\rangle + d\lambda | \partial_{\lambda} u_{\lambda} \rangle + ...) \approx d\lambda \langle u_{\lambda} | \partial_{\lambda} u_{\lambda} \rangle$$

• Since: $\lim_{x \to 0} \ln(1+x)/x = 1$.

• So the Berry Phase in the continuous setting is:

$$\gamma_L = -imag \oint_L \langle u_\lambda | \partial_\lambda u_\lambda
angle \, d\lambda \qquad (arg o imag)$$

•
$$\ln \langle u_{\lambda} | u_{\lambda+d\lambda} \rangle = \ln \langle u_{\lambda} | (|u_{\lambda}\rangle + d\lambda | \partial_{\lambda} u_{\lambda} \rangle + ...) \approx d\lambda \langle u_{\lambda} | \partial_{\lambda} u_{\lambda} \rangle$$

• Since: $\lim_{x \to 0} \ln(1+x)/x = 1$.

• So the Berry Phase in the continuous setting is:

$$\gamma_L = -imag \oint_L \langle u_\lambda | \partial_\lambda u_\lambda
angle \, d\lambda \qquad (arg o imag)$$

• Only gauge invariant modulo $2\pi\mathbb{Z}$ in this setting!

•
$$\ln \langle u_{\lambda} | u_{\lambda+d\lambda} \rangle = \ln \langle u_{\lambda} | (|u_{\lambda}\rangle + d\lambda | \partial_{\lambda} u_{\lambda} \rangle + ...) \approx d\lambda \langle u_{\lambda} | \partial_{\lambda} u_{\lambda} \rangle$$

• Since: $\lim_{x \to 0} \ln(1+x)/x = 1$.

• So the Berry Phase in the continuous setting is:

$$\gamma_L = -imag \oint_L \langle u_\lambda | \partial_\lambda u_\lambda
angle \, d\lambda \qquad (arg o imag)$$

- Only gauge invariant modulo $2\pi\mathbb{Z}$ in this setting!
- The integrand is purely imaginary $\implies \gamma_L = \oint_L i \langle u_\lambda | \partial_\lambda u_\lambda \rangle d\lambda$

$$2Re \langle u_{\lambda} | \partial_{\lambda} u_{\lambda} \rangle = \langle u_{\lambda} | \partial_{\lambda} u_{\lambda} \rangle + \overline{\langle u_{\lambda} | \partial_{\lambda} u_{\lambda} \rangle} \\ = \langle u_{\lambda} | \partial_{\lambda} u_{\lambda} \rangle + \langle \partial_{\lambda} u_{\lambda} | u_{\lambda} \rangle \\ = \partial_{\lambda} \langle u_{\lambda} | u_{\lambda} \rangle = 0$$

• The integrand is known as the Berry Connection/Potential:

 $A(\lambda) = i \langle u_{\lambda} | \partial_{\lambda} u_{\lambda} \rangle$

• The integrand is known as the Berry Connection/Potential:

 $A(\lambda) = i \langle u_{\lambda} | \partial_{\lambda} u_{\lambda} \rangle$

• Under a gauge transformation, ϕ , it becomes:

 $A(\lambda) \mapsto A(\lambda) - \nabla_{\lambda} \phi$

• The integrand is known as the Berry Connection/Potential:

 $A(\lambda) = i \langle u_{\lambda} | \partial_{\lambda} u_{\lambda} \rangle$

• Under a gauge transformation, ϕ , it becomes:

$$A(\lambda) \mapsto A(\lambda) - \nabla_{\lambda} \phi$$

• For dim \geq 2 define the *Berry Curvature* via the curl:

$$\Omega(\lambda) = \nabla \times \vec{A}(\lambda) \stackrel{\dim 2}{=} \partial_x A_y - \partial_y A_x$$

• The integrand is known as the Berry Connection/Potential:

 $A(\lambda) = i \langle u_{\lambda} | \partial_{\lambda} u_{\lambda} \rangle$

• Under a gauge transformation, ϕ , it becomes:

$$A(\lambda) \mapsto A(\lambda) - \nabla_{\lambda} \phi$$

• For dim \geq 2 define the *Berry Curvature* via the curl:

$$\Omega(\lambda) = \nabla \times \vec{A}(\lambda) \stackrel{\dim 2}{=} \partial_x A_y - \partial_y A_x$$

• $\Omega(\lambda)$ is Gauge Invariant

• The integrand is known as the Berry Connection/Potential:

 $A(\lambda) = i \langle u_{\lambda} | \partial_{\lambda} u_{\lambda} \rangle$

• Under a gauge transformation, ϕ , it becomes:

$$A(\lambda) \mapsto A(\lambda) - \nabla_\lambda \phi$$

• For dim \geq 2 define the *Berry Curvature* via the curl:

$$\Omega(\lambda) = \nabla \times \vec{A}(\lambda) \stackrel{\dim 2}{=} \partial_x A_y - \partial_y A_x$$

- $\Omega(\lambda)$ is Gauge Invariant
- Apply Stokes' Theorem (to what you can):

$$\oint_{L} \vec{A}(\lambda) \cdot d\lambda + 2\pi Q = \iint_{S} \Omega(\lambda) dS$$

Chern Theorem

For a closed 2D manifold we have that the integral of the Berry Curvature is $2\pi Q$, where $Q \in \mathbb{Z}$ is the <u>Chern Number</u>.

$$\iint_{S} \Omega(\lambda) \cdot d\mathbf{S} = 2\pi Q \tag{3}$$

"Note that when the Chern number is nonzero, it is impossible to construct a smooth and continuous gauge over the entire surface S" [Vanderbilt].

Gauge Obstruction (1)

Gauge Obstruction (2)

Ground State across Parameter Space

• Step 1: Discretize the Torus into plaquettes.

13/19

• Step 1: Discretize the Torus into plaquettes.

• Step 2: Calculate eigenstate at each vertex.

• Step 1: Discretize the Torus into plaquettes.

- Step 2: Calculate eigenstate at each vertex.
- Step 3: Calculate all the edge angles and normalize:

$$U(e_{u o v}) = rac{\langle u | v
angle}{\| \langle u | v
angle \|}$$

• Step 1: Discretize the Torus into plaquettes.

- Step 2: Calculate eigenstate at each vertex.
- Step 3: Calculate all the edge angles and normalize:

$$U(e_{u o v}) = rac{\langle u | v
angle}{\| \langle u | v
angle \|}$$

• Step 4: Calculate Berry Flux for each plaquette and sum:

$$\tilde{F}_{x}^{y} = ln \Big(U(e_{1})U(e_{2})U(e_{3})^{-1}U(e_{4})^{-1} \Big)$$
(4)

• We follow Fukui et al. and apply the method to the following family of Hamiltonians parameterized by $\vec{\mathbf{k}} = (k_x, k_y)$:

$$H(\vec{\mathbf{k}}) = \begin{pmatrix} -2t\cos(k_y - \frac{2}{3}\pi) & -t & -te^{-3ik_x} \\ -t & -2t\cos(k_y - \frac{4}{3}\pi) & -t \\ -te^{3ik_x} & -t & -2t\cos(k_y - 2\pi) \end{pmatrix}$$

• We follow Fukui et al. and apply the method to the following family of Hamiltonians parameterized by $\vec{\mathbf{k}} = (k_x, k_y)$:

$$H(\vec{\mathbf{k}}) = \begin{pmatrix} -2t\cos(k_y - \frac{2}{3}\pi) & -t & -te^{-3ik_x} \\ -t & -2t\cos(k_y - \frac{4}{3}\pi) & -t \\ -te^{3ik_x} & -t & -2t\cos(k_y - 2\pi) \end{pmatrix}$$

 This family of matrices is obtained from the floquet representation of the Hamiltonian describing spinless fermions subjected to an eternal magnetic field undergoing certain flux constraints.

Results

We reproduced the results of Fukui et al., i.e. Q = -2 and found similar \tilde{F} -surfaces:

Application (2)

• Qi-Wu-Zhang Model is given by a Hamiltonian in *k*-space with an additional parameter, *u*:

$$H(\vec{\mathbf{k}}, u) = \begin{pmatrix} u + \cos(k_x) + \cos(k_y) & \sin(k_x) - i\sin(k_y) \\ \sin(k_x) + i\sin(k_y) & -u - \cos(k_x) - \cos(k_y) \end{pmatrix}$$

• Qi-Wu-Zhang Model is given by a Hamiltonian in *k*-space with an additional parameter, *u*:

$$H(\vec{\mathbf{k}}, u) = \begin{pmatrix} u + \cos(k_x) + \cos(k_y) & \sin(k_x) - i\sin(k_y) \\ \sin(k_x) + i\sin(k_y) & -u - \cos(k_x) - \cos(k_y) \end{pmatrix}$$

• The Chern Number as a function of *u* for this model is:

$$Q(u) = \begin{cases} 0 & \text{if } |u| > 2 \\ -1 & \text{if } -2 < u < 0 \\ +1 & \text{if } 0 < u < 2 \end{cases}$$

Which is exactly what we see in our code.

16/19

Visualizing QWZ Model's Chern Number

(a) Brillouin Zone

(b) BP along rings of the torus.

Visualizing QWZ Model's Chern Number

- Michael Berry, *Quantal Phase factors for accompanying adiabatic changes*, Royal Society, 1984.
- Takahiro Fukui, Yasuhiro Hatsugai, and Hiroshi Suzuki, Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances, Journal of the Physical Society of Japan Vol. 74, No. 6, June, 2005.
- David Vanderbilt, Berry Phases in Electronic Structure Theory, Cambridge University Press, 2018.
- J. K. Asbóth, L. Oroszlány, and A. Pályi, *A Short Course on Topological Insulators*, 2015.