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Background

Consider a family of self-adjoint complex-valued matrices, H(p⃗),
parameterized by some vector p⃗.

Suppose we have a loop in the parameter space, that is p⃗(t) where
p⃗(tinit) = p⃗(tfinal).

Look at how the ground energy eigenstate (normalized) changes
along this loop, i.e. try to make a smooth section.

We get that: |ψ(tinit)⟩ = e iθ |ψ(tfinal)⟩.
Berry Phase is the total amount of phase accumulated by the loop.
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Berry Phase (Discrete Formulation)

Consider n-many unit quantum states arranged in a loop as such:

Berry Phase

We may define the Berry Phase as:

BP := −arg
[
⟨u0|u1⟩ ⟨u1|u2⟩ · · · ⟨uN−1|u0⟩

]
(1)
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Gauge Transformations

Imagine you are driving a car at 60MPH.

A gauge transformation would be to switch your speedometer to
kilometers per hour.

The numbers will be different, yet nothing changed about your
*driving experience*.
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Gauge Transformations (Cont.)

A gauge transformation in our setting is |ui ⟩ 7→ e iβi |ui ⟩.

BP is a gauge independent quantity.

B.P. Gauge Independence

Applying the gauge transformation to every state:

BP := −arg
[
⟨u0|u1⟩ ⟨u1|u2⟩ · · · ⟨un−1|u0⟩

]
7→ −arg

[
(e i(−β0+β1−β1+β2−β2+···+β0) ⟨u0|u1⟩ ⟨u1|u2⟩ · · · ⟨un−1|u0⟩

]
= −arg

[
e0 ⟨u0|u1⟩ ⟨u1|u2⟩ · · · ⟨un−1|u0⟩

]
= BP
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Berry Flux

Consider now a 2D lattice of these states:

Let’s calculate the Berry Phase of the loop along the boundary.

Alt. Approach: Add up BP of the enclosed plaquettes.

Each internal edges is included twice with opposite orientations.
The BP for a plaquette, □, is called Berry Flux, denoted as F□.
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Chern Number

Summarizing this, we get:

exp(−iBP) = exp
(
−i

∑
□

F□
)

(2)

Does this imply BP =
∑

□ F□?

No. LHS takes the complex log one time vs. the RHS at each
plaquette.

The true equality is then:

BP =
∑
□

F□ + 2πQ

This number Q is the Chern Number.
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Continuous Formulation

ln ⟨uλ|uλ+dλ⟩ = ln ⟨uλ|
(
|uλ⟩+ dλ |∂λuλ⟩+ . . .

)
≈ dλ ⟨uλ|∂λuλ⟩

Since: limx→0 ln(1 + x)/x = 1.

So the Berry Phase in the continuous setting is:

γL = −imag

∮
L
⟨uλ|∂λuλ⟩ dλ (arg → imag)

Only gauge invariant modulo 2πZ in this setting!

The integrand is purely imaginary =⇒ γL =
∮
L i ⟨uλ|∂λuλ⟩ dλ

2Re ⟨uλ|∂λuλ⟩ = ⟨uλ|∂λuλ⟩+ ⟨uλ|∂λuλ⟩
= ⟨uλ|∂λuλ⟩+ ⟨∂λuλ|uλ⟩
= ∂λ ⟨uλ|uλ⟩ = 0
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Continuous Formulation (Cont.)

The integrand is known as the Berry Connection/Potential:

A(λ) = i ⟨uλ|∂λuλ⟩

Under a gauge transformation, ϕ, it becomes:

A(λ) 7→ A(λ)−∇λϕ

For dim ≥ 2 define the Berry Curvature via the curl:

Ω(λ) = ∇× A⃗(λ)
dim 2
= ∂xAy − ∂yAx

Ω(λ) is Gauge Invariant

Apply Stokes’ Theorem (to what you can):∮
L
A⃗(λ) · dλ+ 2πQ =

∫∫
S
Ω(λ)dS
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Chern Theorem

Chern Theorem

For a closed 2D manifold we have that the integral of the Berry Curvature
is 2πQ, where Q ∈ Z is the Chern Number.∫∫

S
Ω(λ) · dS = 2πQ (3)

”Note that when the Chern number is nonzero, it is impossible to construct
a smooth and continuous gauge over the entire surface S” [Vanderbilt].
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Gauge Obstruction (1)
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Gauge Obstruction (2)
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Calculating Chern Number for Torus (Fukui et al.)

Step 1: Discretize the Torus into plaquettes.

Step 2: Calculate eigenstate at each vertex.

Step 3: Calculate all the edge angles and normalize:

U(eu→v ) =
⟨u|v⟩

∥ ⟨u|v⟩ ∥

Step 4: Calculate Berry Flux for each plaquette and sum:

F̃ y
x = ln

(
U(e1)U(e2)U(e3)

−1U(e4)
−1

)
(4)
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Application (1)

We follow Fukui et al. and apply the method to the following family
of Hamiltonians parameterized by k⃗ = (kx , ky ):

H (⃗k) =

−2t cos(ky − 2
3π) −t −te−3ikx

−t −2t cos(ky − 4
3π) −t

−te3ikx −t −2t cos(ky − 2π)



This family of matrices is obtained from the floquet representation of
the Hamiltonian describing spinless fermions subjected to an eternal
magnetic field undergoing certain flux constraints.
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Results

We reproduced the results of Fukui et al., i.e. Q = −2 and found similar
F̃ -surfaces:
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Application (2)

Qi-Wu-Zhang Model is given by a Hamiltonian in k-space with an
additional parameter, u:

H (⃗k, u) =

(
u + cos(kx) + cos(ky ) sin(kx)− i sin(ky )
sin(kx) + i sin(ky ) −u − cos(kx)− cos(ky )

)

The Chern Number as a function of u for this model is:

Q(u) =


0 if |u| > 2

−1 if − 2 < u < 0

+1 if 0 < u < 2

Which is exactly what we see in our code.
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Visualizing QWZ Model’s Chern Number

(a) Brillouin Zone (b) BP along rings of the torus.

Daniel Mandragona (Texas A&M University) Berry Phase & Chern Numbers February 11, 2025 17 / 19



Visualizing QWZ Model’s Chern Number
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