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Abstract

Markov chain based and Monte Carlo methods are
widely used in all scientific disciplines. The framework
of modeling a problem as a probabilistic distribution is
a robust solution in many scenarios due to its ability to
circumvent potentially non-computable complexities. As
such, much effort has been placed on developing novel
probabilistic algorithms and improving existing ones. The
heart of these algorithms involve computing an estimate
distribution that is to resemble the unknown one. A
popular method for this is the Metropolis Hasting’s Al-
gorithm which creates a Markov chain utilizing Monte
Carlo sampling to rapidly approach a good estimate of the
unknown distribution. In this paper we will be discussing a
framework for the quantization of random walks outlined
by [1] and then also a quantum adapted Metropolis-
Hastings algorithm as constructed by [2].

I. INTRODUCTION

Monte Carlo methods are computational algorithms that rely
upon random sampling in an effort to achieve information
about a particular system. They are particularly helpful when
the system under question is computationally intractable such
as in many-body problems, and as such this class of algorithms
can be seen across all science disciplines. One such important
question to answer about a system is to view the system as
a probability space. For example if we have a box filled with
labeled particles each interacting with each other we may ask
the question what is the probability that I find particle, pi,
in region R? As the number of particles increase this question
quickly becomes computationally expensive. The Monte Carlo
answer to this would be to repetitively sample the position of
the i-th particle and estimate the ground-truth probability.

The Metropolis-Hastings algorithm builds a Markov chain
from a sequence of random samples coming from the under-
lying distribution. This sequence is a random walk and under
certain conditions on the Markov process will converge to
a stationary distribution equivalent to that of the underlying
distribution. This is wonderful when direct sampling of the
underlying distribution is a difficult task. An example of such
a problem is the protein folding question, i.e., given a protein
sequence what 3D structure will it fold to? There are many
possible 3D structures that the sequence can fold to, hence
the search space is computationally intractable. Randomly
sampling from this space of structures is computationally
difficult as well. If instead we start with a 3D structure and

randomly perturb atomic positions or bond angles, i.e., making
small random moves then we can compute such changes. This
would in turn give us a random walk through the search space.
Metropolis-Hastings tells us that we may use this walk to
obtain a good estimate of the true distribution.

In this paper we will first discuss the framework and
results of Szegedy on adapting random walks to the quantum
setting, then we will move on towards the classical Metropolis-
Hastings algorithm, and then finally we will adapt this algo-
rithm for the quantum setting following the work of (Lemieux,
et al., [2]).

II. MARKOV THEORY

Put simply, a discrete time Markov process (chain) is a
sequence of random variables, X1, X2, . . . , such that given a
”state” on the first t-many steps, (x1, x2, . . . , xt) the proba-
bility that we move to state: xt+1 depends only on our current
state, xt. Mathematically this is the following property:

P (Xt+1 = xt+1|X1 = x1, . . . , Xt = xt) (1)
= P (Xt+1 = xt+1|Xt = xt)

This property is known as the memoryless property of Markov
chains. Now looking at random walks, if we have that a
random walk’s transition probabilities only depend on which
vertex one is at, then the random walk is memoryless and
hence a Markov chain.

For the remainder of this section we mainly summarize
some basis Markov chain theory as outlined by [3]. Suppose
now that the state space, Ω, for the Markov chain is finite.
Then given any state x ∈ Ω there are only a finite number of
possible states that we can go to starting at x. Then let T be
the matrix whose x-th row and y-th column is the probability
Tx,y = P (y|x). This is known as a transition matrix. Note
that T is square. An important concept that we will be using
heavily is that of the stationary distribution. A stationary
distribution, π, in this context is a vector whose entries are
non-negative and sum to 1 that is also unchanged when applied
to T , that is:

πT = πTT

We may think of πi as the probability of state i ∈ Ω. Given
an initial distribution vector, ν, (for example the probability
to get to integer z starting at 0 in a simple random walk) we
can say:

νi = P (X0 = i)



So then ν is a vector that describes a probability distribution
and that:

(νTT )x =
∑
y∈Ω

νyTy,x

This can be interpreted as the total probability reaching
the state x after a transition. Then we evolve the state by
repetitively applying T and observe that after n-many steps
that:

P (Xn = j) =
∑
i∈Ω

P (X0 = i)(Tn)i,j

=
∑
i∈Ω

νi(T
n)i,j

= (νTTn)j

We say that a Markov chain is irreducible if there exists
for any states i, j ∈ Ω a path: (i, k1, k2, . . . , ks, j) which
has a positive probability of occurring. This is not always
guaranteed, for example:

1

2

3

T1,2 = 1
2 T3,2 = 1

2

States 1 and 3 do not have paths to each other with positive
probability.

We now define another important property of Markov
chains. We say that the period of a state, i, is the GCD of the
following set: Ci := {n ∈ N : (Tn)i,i > 0}. Conceptually the
set (for which we will take the GCD over) contains all steps,
n, such that the probability to start at i and come back to i is
positive for a path of n-many steps. The period of i is then
the GCD of all such times.

Example 1. Consider the simple random walk on the integers.
If you start at z ∈ Z, then you can only get back to z with
paths of even length. It then follows that the period of all
integers under a simple random walk is just 2 since 2 ∈ Ci

and 2 must divide any other cycle length.

A few observations can be made, first being that an ir-
reducible Markov chain features all states having the same
period. This follows from the fact that if there is a path from
state i to j with positive probability and one from j to i with
positive probability then they must have the same period.

Proof. Let m be the path length of the positive probability
path from i to j and n for the path from j to i. Then let di
be the period of i (similarly for dj). We have that m + n is
the path length of a path from i to i. Hence di divides m+n.
Let s ∈ {n ∈ N : (Tn)j,j}. Then n +m + s is again a path
from i to i. Hence we have that:

di|(m+ n+ s) =⇒ di|s

Since m+n+s
di

= m+n
di

+ s
di

are all integers. Thus, by definition
of GCD we have dj ≥ di. Reversing the roles gives us that
di ≥ dj . Hence they must be equal.

So now we have that an irreducible Markov chain can be
described by a single period. We say that a Markov chain is
aperiodic if all of its periods are 1. An irreducible, aperiodic
Markov chain is called Ergodic. Ergodic Markov chains are
special because they have well-defined long term behavior.
The importance of aperiodicity in this conclusion is that when
a random walk is aperiodic then there must be some amount
of steps, N , such that for any t ≥ N we have that there is
a cycle for any state in Ω of length exactly t. This follows
from the fact that given any two coprime integers, then there
is a largest number that can’t be formed by their positive span.
This is proved in Appendix [A]. We now arrive at an important
result:

Theorem 1. An Ergodic Markov chain on a finite state
space has a stationary distribution, πT , and given any initial
distribution, ν, we have that:

lim
n→∞

νTTn = πT (2)

Proof. We first observe that for all n ∈ N that νTTn is a
probability distribution. This is clear though since:∑

j∈Ω

(νTTN )j =
∑
j∈Ω

∑
i∈Ω

ν(i)(TN )i,j

=
∑
i∈Ω

ν(i)
∑
j∈Ω

(TN )i,j

=
∑
i∈Ω

ν(i) · 1

= 1

Thus, we have that the set of probability distributions on
Ω, denoted by P , is closed under the action of T . It is
also easy to see that the set of probability distributions on
Ω is the intersection of the closed upper right quadrant of
RΩ (probability distributions must be nonnegative) with the
hyperplane x1 + · · · + x|Ω| = 1 (the entries must sum to 1).
Since Hyperplanes are closed and bounded we have that P is
also closed and bounded and hence compact by Heine-Borel.
Therefore the sequence of probability distributions given to
us by (2) must have a convergent subsequence. Using Cesaro
Averages we can arrive at the fact that tail-behavior of the
sequence does not depend on ν, and so πT always exists.

III. QUANTUM RANDOM WALK FRAMEWORK

We now introduce the Szegedy operator which quantizes a
classical random walk as outlined in [1]. We then show that
the phase gap for this operator is quadratically larger than
its classical counterpart. This shows that we will experience
a quadratic speed-up in regards to the mixing (meaning
convergence to stationary distribution) of our Markov process
from a well-known result.

Let T be the transition matrix for a classical random walk.
The quantization process by Szegedy involves constructing a



Bipartite random walk, in our case the two bipartite states are
both Ω i.e., X = Ω and Y = Ω, then let Px,y = Tx,y and let
Qy,x = Ty,x. This gives us the basis for its Hilbert space:

{|x⟩ |y⟩ : x ∈ X, y ∈ Y }

Define the following operators (which may be thought of as
column vectors):

ϕx =
∑
y∈Y

√
Px,y |x⟩ |y⟩ ψy =

∑
x∈X

√
Qy,x |x⟩ |y⟩ (3)

Now let A be all such columns (ϕx) and B be the columns
(ψy). The Szegedy’s walk operator, W , is defined as:

W = refBrefA (4)
refA = 2AA∗ − I

refB = 2BB∗ − I

We shall show how this looks for the Ergodic Markov chain
in Fig [1]. Note that since A is an operator on Ω⊗Ω that for
example the fourth column of A:

A4 = ϕ4 =

√
3

2
|4⟩ |3⟩+ 1

2
|4⟩ |5⟩

is a vector of many components. This vector has 52 many slots.
As a vector this is expressed as 3 · 5 many 0’s followed by
(0, 0,

√
3
2 , 0,

1
2 ) followed by 5 more zeroes, hence A ∈ C52×5.

We also see that A∗A = I since (A∗A)i,j = ϕi · ϕj and by
definition of ϕi will be zero for all for all coordinates not
corresponding to transitions from state i, thus (A∗A)i,j =
ϕi · ϕj = δji ∥ϕi∥ = δji . So A∗A is in fact the identity on
Ω⊗ Ω. Similarly so is B∗B.

From this we get the important description of what refA
is. We see that (2AA∗ − I)A = 2AA∗A − A = A. Now let
v ∈ C(A)⊥ (v is orthogonal to the column space of A), then
(2AA∗ − I)v = 2AA∗v − v = 0− v = −v since the column
space A is equal to the row space of A and hence equal to
the column space of A∗ (and consequently v is orthogonal to
the column space of A∗). So in total we get the following
equations:

(2AA∗ − I)A = A (5)

(2AA∗ − I)v = −v for v ∈ C(A)⊥ (6)
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1

Fig. 1. An Ergodic Markov chain. Every node can be reached from any node,
and for node 4 there is a path back to 4 of length 2 and 3, so this graph is
aperiodic.

We can thus view refA and refB as reflections over the
column spaces of A and B (hence the name ”ref ”). It then
follows that as we can write v ∈ Ω ⊗ Ω as v = c + o
where c ∈ C(A) and o ∈ C(A)⊥, then refAv = c − o and
is thus unitary. Finally, we define D(A,B) = A∗B to be the
discriminant matrix of the quantized random walk operator W .
It is easy to see that D(A,B)x,y = ϕx ·ψy =

√
px,y

√
qy,x. In

the case of a classical random walk with a symmetric transition
matrix we will have that qy,x = py,x = px,y , and so D(A,B)
will just be the transition matrix for this walk.

IV. SPECTRAL ANALYSIS OF SZEGEDY WALK OPERATOR

We now attempt to characterize the eigenvalues of W as this
will be tied to many important properties of the random walk
such as the rate at which it mixes (converges to its stationary
distribution).

Given a vector v ∈ Ω ⊗ Ω then D(A,B) can be viewed
as a map from C(B) −→ C(A) since D(A,B)v = A∗(Bv),
i.e. it takes a vector in C(B) of the form Bv and sends it to
the column space of A∗ which equals the column space of
A. Now we have that A ·D(A,B) is an orthogonal projector
from the column space of B to A since AA∗ is an orthogonal
projector for column space of A. Mathematically, we see that
(ϕi)

|Ω|
i=1 form an orthonormal basis for C(A) ⊂ Ω ⊗ Ω and

that:

(AA∗)v = A
(
⟨ϕ1, v⟩, ⟨ϕ2, v⟩, . . . , ⟨u|Ω|, v⟩

)T
=

( |Ω|∑
i=1

ϕi(j)⟨ϕi, v⟩
)|Ω|2

j=1

=

|Ω|∑
i=1

⟨ϕi, v⟩ϕi

Hence, AA∗ projects v onto C(A). There AD(A,B) is an
orthogonal projection from C(B) −→ C(A) and similarly for
D(A,B)∗. We now let λ be a singular value of D(A,B) with
right singular unit-vector v and left singular unit-vector w.
This gives us:

A∗Bv = λw (7)
B∗Aw = λv (8)



We now observe that ∥Bv∥ = ∥v∥. To see why it is best
illustrated via concrete example. Let |Ω| = 3. Then take an
ordering on the components of a vector in Ω× Ω as:

v =
(
v1 |11⟩ , v2 |12⟩ , v3 |13⟩ ,
v4 |21⟩ , v5 |22⟩ , v6 |23⟩ ,
v7 |31⟩ , v8 |32⟩ , v9 |33⟩

)
Then B = (ψ1, ψ2, ψ3) where ψy are column vectors from
(2). Note that ψy is still written in the order of |x⟩ |y⟩, and so
for example:

ψ1 =
(√
q1,1, 0, 0, ψ2 =

(
0,
√
q2,1, 0,

√
q1,2, 0, 0, 0,

√
q2,2, 0,

√
q1,3, 0, 0

)
0,
√
q2,3, 0

)
Then the matrix B acts on v ∈ Ω not v ∈ Ω × Ω. We can
think of v as being a probability distribution on Ω of all states
y ∈ Ω. Now we see that (Bv)|x⟩|y⟩ =

√
qy,xvy . So finally,

∥Bv∥2 =
∑

x,y∈Ω

qy,xv
2
y

=
∑
y∈Ω

v2y
∑
x∈Ω

qy,x

=
∑
y∈Ω

v2y · 1

= ∥v∥2

So we see that ∥Bv∥ = ∥v∥ and similarly ∥Aw∥ = ∥w∥. We
also observe that projections do not increase length of vectors
since at most the component of a vector w.r.t. a subspace
can be at mos the vector itself (corresponding to that vector
belonging to the subspace that we are projecting to). Thus,
we get the following result by combining this with (6) and (7)
and since v, w are both of unit norm:

Lemma 2. All singular values of D(A,B) are at most one.

Now since singular values (for real-valued matrices) are
always non-negative, we may write them all as cos(θ) = λ
where 0 ≤ θ ≤ π

2 . The angle has important meaning because:

⟨Aw,Bv⟩ = w∗A∗Bv

= w∗λw

= λ∥w∥
= cos(θ)

We now prove the main result of this section.

Theorem 3. Let cos(θ1), cos(θ2), . . . , cos(θℓ) be the singular
values of D(A,B) that are in the open interval (0, 1) with
associated singular unit vector pairs (vk, wk) for 1 ≤ k ≤ ℓ.
Then the eigenvalues of W = refArefB with non-zero imagi-
nary parts are:

e−i2θ1 , ei2θ1 , e−i2θ2 , ei2θ2 , . . . , e−i2θℓ , ei2θℓ (9)

Proof. We wish to characterize the eigenvalues of W . We
can do this by using Rank-Nullity applied to the subspace
C(A) ∩ C(B). We can write a vector v ∈ H as:

v = vA,B + vA⊥,B + vA,B⊥ + vA⊥,B⊥ (10)

We also observe that AD(A,B) can be viewed in a way
as the orthogonal projection of C(B) −→ C(A) and vice-
versa for BD(A,B)∗. We can gain insight then by looking
at the singular values for D(A,B) since this will help us
understand how W acts on the overlap of C(A)∩ C(B)⊥ and
C(A)⊥∩C(B). It is also understood that the singular values of
D(A,B) form a complete system, therefore AD(A,B) gives
us back all of C(A). Finally, putting everything together we
will be able to see how W acts on a vector of H since we can
always decompose v into its projected components in (9).

Let πA = AA∗ and πB = BB∗ be the orthogonal
projectors. Then for our singular value vector pairs we have
that:

πABv = cos(θ)Aw, πBAw = cos(θ)Bv (11)

Therefore we see that:

W (Bv) = (2πB − I)(2πA − I)Bv

= (2πB − I)(2λAw −Bv)

= 4λ2Bv − 2Bv − 2λAw +Bv

= (4λ2 − 1)Bv − 2λAw (12)

Similarly,

W (Aw) = (2πB − I)(2πA − I)Aw

= (2πB − I)Aw (13)
= 2λBv −Aw (14)

These two vectors belong to the subspace generated by X =
span{Aw,Bv}, but since they are not multiples of each other
we get that they generate the same subspace. Hence W acting
on this subspace is invariant.

Now if X is two dimensional then W is reflecting this
subspace along the two axes defined by Aw and Bv, and it
is well known that this will result in a single reflection that
is twice the angle between Aw and Bv. Then an eigenvalue
for W that corresponds to a non-trivial reflection here would
give us e±i2θ.

Putting this all together we know that for a vector v ∈
C(A)⊥ ∩ C(B) we get that:

Wv = refBrefAv (15)
= refB(2AA∗ − I)v (16)
= (2BB∗ − I)(−v) (17)
= −v (18)

Similarly, for v ∈ C(A) ∩ C(B)⊥ we have:

Wv = refBrefAv (19)
= refB(2AA∗ − I)v (20)
= (2BB∗ − I)(v) (21)
= −v (22)



Therefore to summarize we get:
• Vectors in C(A)∩ C(B) have singular value 1 (W is the

identity).
• Vectors in C(A)⊥ ∩C(B) and C(A)∩C(B)⊥ correspond

to singular value -1 since W acts as the negative identity
here.

• Vectors in C(A)⊥ ∩ C(B)⊥ are singular value 1 (W is
again the identity).

• Eigenvectors elsewhere may be decomposed by (9) and
are thus non-trivial reflections corresponding to eigen-
values: e±i2θℓ where θℓ is an angle corresponding to a
singular value of D(A,B).

Theorem 4. Eigenvectors of W can be expressed as:

Aw − e±i arccosλBv (23)

Where λ is a singular value of D(A,B).

Proof. Let v = Aw−µBv for some µ ∈ C. We will use µ to
force v to be an eigenvector of W . Computing Wv we get:

Wv = (2πB − I)(2πA − I)(v)

= (2πB − I)(Aw − µ2λAw + µBv)

= 2λBv −Aw − 4µλ2Bv + 2µλAw + µBv

= (2µλ− 1)Aw + (2λ− 4µλ2 + µ)Bv

Therefore for this to be an eigenvector we will need:

(2µλ− 1)(−µ) = (2λ− 4µλ2 + µ)

Hence we get:
µ2 − 2λµ+ 1 = 0

Therefore we get µ = λ± i
√
1− λ2 = e±i arccosλ (view this

as a triangle with hypotenuse of length 1 and adjacent side of
length λ) which is the coefficient we wanted.

Finally, we note that as the set of singular vectors forms
a spanning set for Ω ⊗ Ω we get that every vector can be
expressed as a multiple of Aw−uBv where u ∈ C, hence all
eigenvectors must be of the form we attained.

Theorem 5. The phase gap of W scales as the square root
of the spectral gap of D(A,B) for small gaps.

Proof. The previous theorem tells us that the phase gap of W
will be given by arccosλ for when λ is close to 1 (the singular
vector pair will be 1-dimensional). We also know that λ will
be the second largest eigenvalue of D(A,B). Hence, if we let
∆ be the spectral gap of D(A,B) we get that:

arccos(λ) = arccos (1−∆)

Now it is easy to see that near zero (from the right)
arccos (1− x) ≈ 1√

2

√
x (see appendix [B]). Hence, we have

that as the gap ∆ −→ 0 that the gap of W scales on the order
of

√
∆.

We care so much about the phase gap here because as we
repetitively apply W we are able to separate the eigenvector

corresponding to eigenvalue 1 from the eigenvalue-vector pair
closest to it. The stationary distribution for which the classical
markov chain must converge to is given by the eigenvector
with eigenvalue 1, hence why we wish to distinguish it.

V. METROPOLIS-HASTINGS

A. Overview

We first introduce the classical Metropolis-Hastings algo-
rithm. The insight for this algorithm can be seen by intro-
ducing it for an Ising model system as done in [4]. Given
a graph of 100 particles with spin (each with two different
configurations, +1 or −1) there are 2100 different possible
arrangements, it is therefore intractable to perform global
computations such as finding the mean. The solution provided
by the algorithm is to instead create a Markov chain to
sample from the distribution. We can just start with a random
configuration of the 100 particles and then at each step of the
walk randomly flip spins of certain chosen particles in our
configuration. Then the Metropolis-Hastings approach would
be then to calculate the energy of this new configuration
and accept it as the next state of our Markov chain if the
energy is lower. If the energy is instead higher than the current
state then we accept the higher energy state as our new state
with probability that decays exponentially as the energy gap
increases.

Initialization Call

Propose

MeasureReset

A
ccept

&
U

pdate

Reject

Attempt
Com

ple
te

Fig. 2. State Diagram for Quantum Metropolis-Hastings

B. Quantization

We must adapt this algorithm to be a unitary operator
that we may repetitively apply. This will be done in five
steps as outlined in [4] which consist of an initialization
phase and then four algorithmic phases. A key role is played
in this algorithm by quantum phase estimation. This is an
algorithm originally introduced by [5] which will estimate
a given eigenvector’s eigenvalue (to some fixed number r
bits of precision) eigenvalue, i.e. if ϕi is an eigenvector with
eigenvalue Ei then we have a means of implementing the
following transformation:

|ϕi⟩ |0⟩ −→ |ϕi⟩ |Ei⟩



Step 0: Initialization: We will need four quantum registers
to make each step of the algorithm reversible. The first register
will store our current state in the Markov chain, the second
register will store the energy of this state up to some fixed
precision (r−bits), the third register will store the energy of
the proposed new state (also up to r−bits of precision) which
will be achieved by the quantum phase estimate algorithm,
and finally the fourth register will store whether we accept or
reject the new state. We use [6] to find a random eigenvector,
ϕi, for our Hamiltonian and measure its eigenvalue (to some
r-bit precision) to achieve the state:

|ϕi⟩ |Ei⟩ |0⟩r |0⟩

which we pass to step (1).
Step 1: Function Call: We reset the upper two registers and

proceed to step (2).
Step 2: Propose New State: We must have a set of unitary

operations C = {C1, . . . , Cn} which correspond to changes to
our current state. In the Ising spin system this would be a set
of 100 different X gates. The only real requirements on this
set of operations is that we need all possible configurations
of the system to be achievable by the set and to be closed
under the Hermitian. We may also allow selection from this
set to be non-uniform in which case we also require that the
probability of choosing C ∈ C is the same as choosing C†.
C ∈ C is then selected and applied to the first register which

gives us the superposition of eigenstates:

C |ϕi⟩ −→
∑
k

xk |ϕk⟩

We then apply quantum phase estimation in the third register
to achieve the total state:∑

k

xk |ϕk⟩ |Ei⟩ |Ek⟩ |0⟩

We now calculate the acceptance probability that we described
in the overview. This will be:

ak = min(1, e−β(Ek−Ei))

where β is the inverse temperature of the Boltzmann distri-
bution. We then apply the following unitary transformation
onto the fourth register (which takes as input the two energy
registers):

W (Ei, Ek) =

(√
1− ak

√
ak√

ak −
√
1− ak

)
This gives us the following state:∑

k

xk
√
1− ak |ϕk⟩ |Ei⟩ |Ek⟩ |0⟩

+
∑
k

xk
√
ak |ϕk⟩ |Ei⟩ |Ek⟩ |1⟩ (24)

The importance of this state will be seen in the following step.

Step 3: Measurement: We now measure the fourth register
of (24) which is a single bit, and we associate measuring 1 as
accepting the move. In the case of observing 1 in the fourth
register we then measure the eigenvalue in the third register
which collapses us to:

|ϕk⟩ |Ei⟩ |Ek⟩ |1⟩

The significance is that we moved to this exact state with
probability ak∥xk∥2 which is exactly the probability of tran-
sitioning to the eigenstate ϕk from ϕi. Thus, we feed the
collapsed state back to step (1) which completes the iteration
of the algorithm.

On the other hand things become more difficult if we
measure the fourth register and find 0 then we are in a reject
state and must try to undo the change. Normally, this would
be simple since we have applied three unitary operators, but
unfortunately we have just measured the fourth register which
is not a reversible operation. Surprisingly, however, we still
have a means of generating an eigenstate with the same energy
as the starting state. Denote U as the unitary operator we get
by applying the sequence of operators from step (2), i.e. the
specific C ∈ C that we used, phase estimation, and then W .
Given that we are in the reject state we now apply U† and
pass to step (4).

Step 4: Reset Upon Rejection: We are able prepare a state
with the same energy as our initial eigenstate (which we will
prove shortly). To do this we must first construct the following
measurement projectors:

P0 =
∑
i

∑
Eα ̸=Ei

|ϕα⟩ ⟨ϕα| ⊗ |Ei⟩ ⟨Ei| ⊗ I⊗ I

P1 =
∑
i

∑
Eα=Ei

|ϕα⟩ ⟨ϕα| ⊗ |Ei⟩ ⟨Ei| ⊗ I⊗ I

Here, P1 acts on the first two registers and collapses us to
a state: |ϕα⟩ |Eα⟩ where ϕα is an eigenstate with the same
energy as our initial eigenstate. It is clear that P0 + P1 = I.

We also have the projectors:

Q0 = U†I⊗ I⊗ I⊗ |0⟩ ⟨0|U
Q1 = U†I⊗ I⊗ I⊗ |1⟩ ⟨1|U

Q1 measures whether the fourth register bit is 1. It is clear then
that Q1 splits the Hilbert space in half, and so the rank of Q1

is half of the dimension of H. We also denote rank(P1) = p,
which we may assume to be small (since we will like to bound
the probability of obtaining P1).

Lemma 6 (Jordan 1875). Let P1 and Q1 be projectors on a
Hilbert space Cn such that rank(P1) = p and rank(Q1) = q
which satisfy p ≤ q and p+ q ≤ n. There there is a basis for



H such that P1 and Q1 can be written as block matrices:

P1 =

(
Ip 0
0 0

)

Q1 =


Dp

√
Dp(Ip −Dp) 0 0√

Dp(Ip −Dp) Ip −Dp 0 0
0 0 Iq−p 0
0 0 0 0


where Dp is a p×p diagonal matrix with real entries in [0, 1].
Note that since q ≥ p the q × q block in Q1 can be written
in terms of the first p-many dimensions of q as it is in our
expression for Q1.

Clearly by our assumptions stated before the lemma about
the ranks of our projectors, we may apply this lemma to our
measurement operators P1 and Q1. Since these are projectors
whose pairs must sum to the identity we get that P0 = I−P1,
and Q0 = I−Q1. We shall now combine all of this to show that
the probability of failing to measure P1 exponentially decays
in the number of repetitive applications of Q and then P .

We now outline a recursive process, referred to as M, that
terminates upon measuring P1.

• Measure P1, and terminate if P1 is observed.
• Apply Q0 and Q1 if P1 isn’t observed.
• Repeat.

We need to show that the probability to measure P1 exponen-
tially grows, to do this we shall calculate the probability of
failing to observe P1 directly after a sequence of applications
of M. Let n be the number of times we applied M. Then
we may have observed Q1 m-many times where 0 ≤ m ≤ n,
hence all the various ways we could have failed to ever observe
P1 given n many repetitions of M is given by:

n∑
m=0

(
n

m

)
(P0Q0P0)

n−m(P0Q1P0)
m

Note that we can indeed group the occurrences of P0Q0P0

and P0Q1P0 in this manner because they commute with each
other. Given that these are measurements, we now calculate

the probability to fail given that we start with a state initially
in step (2) that is |ϕi⟩ |Ei⟩ |0⟩r |0⟩. Then by Born’s Rule:

pfaili (n) = tr
(
|ϕi⟩ |Ei⟩ |0⟩2r+1

n∑
m=0

(
n

m

)
(P0Q0P0)

n−m(P0Q1P0)
mP0Q0

)
By the binomial theorem and the fact that our initial state is
a pure state we may express this as:

pfaili (n) = ⟨ϕi| ⟨Ei| ⟨0|2r+1 |Q0P0 (25)(
P0(Q0P0Q0 +Q1P0Q1)P0

)n
P0Q0 |ϕi⟩ |Ei⟩ |0⟩2r+1

We now employ Lemma (6) to obtain a basis change, B, that
brings us to a basis where we may express P1 and Q1 in the
form given by Lemma (6). Then our formula for the failure
probability becomes:

pfaili (n) = ⟨ϕi| ⟨Ei| ⟨0|2r+1
B†Dfail(n)B |ϕi⟩ |Ei⟩ |0⟩2r+1

(26)
where Dfail(n) is given below by (28):

The calculation for why Dfail(n) is exactly this is given in
Appendix [C].

We wish to see what happens to our initial vector when
Dfail(n)B acts on it. We know that our original state is in
the P1 subspace, and hence when expressed in the B-basis,
Dfail(n) acts on B ⟨ϕi| ⟨Ei| ⟨0|2r+1 via the upper left block
only, and since this is an eigenvector of P1 we get that D
acting upon it results in a scaling by some d ∈ diag(D)
(note that d ∈ [0, 1] by the lemma), and hence there is some
d∗ ∈ diag(D) that corresponds to the largest entry of the upper
left block of Dfail(n). Thus,

pfaili (n) ≤ d∗(1− d∗)
(
d∗

2

+ d∗(1− d∗)2
)n

(27)

Clearly, due to the factor of n we have that this probability
exponentially decays to 0 as n→ ∞. Hence we will eventually
obtain a measurement of P1, and have some state that has the
same energy as our initial state, and so we can pass this to
state to step (1).

Dfail(n) =


D(I−D)

(
D2 + (I−D)2

)n −
√
D − (I−D)(D2 + (I−D)2

)n
0 0

−
√
D − (I−D)(D2 + (I−D)2

)n
D2

(
D2 + (I−D)2

)n
0 0

0 0 1 0
0 0 0 1

 (28)
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APPENDIX
VARIOUS CALCULATIONS

A. Positive Span of Co-Primes
Proof. Let a, b be positive integers that are coprimes. We wish
to prove that for all c > ab we have that there exists positive
coefficients ℓ, k such that c = ℓa+ kb. By Bezout’s Theorem
there exists integer coefficients (not necessarily positive) s0, t0
such that:

c = s0a+ r0b

Then we will also have the following set of solutions:

s = s0 + bt, r = r0 − at, t ∈ Z

We can then find a positive solution if we can find t such that:

−s0
b
< t <

r0
a

This inequality defines an interval, and its length is:
r0
a

− (−s0
b
) =

as0 + br

ab
=

c

ab
This ratio is larger than 1 by our assumption that c > ab.
Hence there must be some integer within the interval defined
by this length. Letting t be this integer, we are done.

B. Calculation of limx→0+
arccos(1−x)√

x
=

√
2

Proof.

lim
x→0+

arccos(1− x)√
x

Lhöpital’s
= lim

x→0+

1√
1−(1−x)2

1
2
√
x

= lim
x→0+

2
√
x√

1− (1− x)2

= lim
t→1−

2
√
1− t√
1− t2

= lim
t→1−

2
√
1− t√

(1− t)(1 + t)

= lim
t→1−

2√
1 + t

=
2√
2

=
√
2

C. Calculation of Dfail(n).

Proof. Let B be a basis change that brings P1 and Q1 to
the form given by Lemma (6). Then we wish to express the
operation:

Q0P0

(
P0(Q0P0Q0 +Q1P0Q1)P0

)n
P0Q0

as B†DfailB From the forms given by the Lemma we have:

Q1P0Q1 =


D(I−D) (I−D)

√
D(I−D) 0 0

(I−D)
√
D(I−D) (I−D)2 0 0
0 0 I 0
0 0 0 0



Q0P0Q0 =


D(I−D) −D

√
D(I−D) 0 0

−D
√
D(I−D) D2 0 0
0 0 0 0
0 0 0 I


Adding them together gives us and multiplying by both sides
by P0 gives us:


0 0 0 0
0 D2 + (I −D)2 0 0
0 0 I 0
0 0 0 I


This is block diagonal so raising it to any exponent gives us the
diagonals raised to that exponent. Then applying P0 to both
sides leaves it unaffected. Finally multiplying by both sides
by Q0 will give us exactly the form we asserted in Dfail(n)
since we are multiplying Q0 by a block diagonal matrix.


