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ABSTRACT

We shall describe the method of Weyl Quantization outlined by Brian Hall in [1] which acts as an
operator on the space of L2 functions over the classical phase space i.e., L2(Rn×Rn), onto the space
of Hilbert-Schmidt operators over L2(Rn). We will then show some nice properties of this operator.
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1 What is Quantization?

Quantum mechanics states that for every real-valued function, f , on the classical phase space there is an associated
self-adjoint operator, f̂ , on the quantum Hilbert space. We shall call f̂ the quantization of f .
Example 1 (Need for Quantization). Consider the classical observables x and p. Then since the commutator of their
quantizations: [X,P ] = iℏ, we know that (XP )∗ = PX ̸= XP . So the straight forward replacement will not lend us
a quantization of the classical functions xp. Instead we could try something like:

x̂p̂ =
1

2
(XP + PX)

2 Weyl Quantization of Polynomial Observables

For simplicity we limit ourselves to systems with one degree of freedom, and classical observables that are polynomials
in x and p. We also note that operators that we will be considering may fail to be essentially self-adjoint even if they are
symmetric such as the operator:

P 2 − cX4 (c > 0)

which is not essentially self-adjoint on C∞
c (R).
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We see that the trouble of quantization comes from choosing an ordering of X and P . We will see that Weyl
Quantization effectively considers all possible orderings and weighs them evenly:

Example 2 (Weyl Quantization of x2p2). This would give us:

1

6

(
X2P 2 +XPXP + PXPX + P 2X2 + PXXP +XP 2X

)
We may therefore define the Weyl Quantization scheme as:

Qweyl(x
jpk) =

1

(j + k)!

∑
σ∈Sj+k

σ(X,X, . . . ,X, P, P, . . . , P ) (1)

It is clear from this definition that the Weyl operator is linear. Furthermore we have the following theorem:

Theorem 1. We see that the Weyl Quantization uniquely satisfies the following property:

Qweyl
(
(ax+ bp)j

)
= (aX + bP )j

Proof. Let (ai) and (bi) be sequences in C. Then we can see that:

Qweyl
(
(a1x+ b1p) · · · (ajx+ bjp)

)
=

1

j!

∑
σ∈Sj

σ(a1X + b1P, . . . , ajX + bjP )

This is because of linearity of the Weyl operator and since σ(X+P,X+P ) = σ(X,X)+σ(P,X)+σ(X,P )+σ(P, P ).

Now taking the case where ai = a and bi = b we get that each selection of aX or bP is indistinguishable and each
permutation is the same object. Thus, since |Sj | = j! we cancel out the 1

j! in front of the sum and are left with:

(aX + bP )j

as desired. Conversely, if we say that Q is a linear map of the space of polynomials into the space of operators that
satisfies the theorem property, then we may denote Vj as the space of homogeneous polynomials of degree j (every
nonzero term has variables whose degrees sum to the same value as every other term) where Q agrees with Qweyl. By
assumption we have that Vj contains all polynomials of the form (ax+ bp)j , and by appendix [6] we know that this
gives us all of Vj , hence Q = Qweyl.

3 Weyl Quantization in R2n

Instead of considering Weyl Quantization for polynomials in R2 as we did above, we can generalize to R2n with the
formula:

Qweyl
(
(a · x+ b · p)j

)
=

(
a ·X+ b ·P

)j
(2)

We can also see that (2) will interact nicely with multiplication by a factor of i
j

j! and also summation. Hence we can
extend to complex exponentials to get:

Qweyl
(
ei(a·x+b·p))= ei(a·X+b·P)

With complex exponentials under our belt, we may quantize functions using the Fourier transform. So if we have some
function f on the classical phase space such that it may be expressed via the Fourier transform:

f(x,p) = (2π)−n
∫
R2n

f̂(a,b)ei(a·x+b·p)dadb

we may quantize it as:

Qweyl(f) = (2π)−n
∫
R2n

f̂(a,b)ei(a·X+b·P)dadb (3)

We wish to now compute exactly what exp
(
i(a ·X+ b ·P)

)
is. We will use a useful formula proved in Appendix [6]:

eA+B = e−
[A,B]

2 eAeB

2
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which applies to bounded operators which also commute with their commutator ([A, [A,B]] = [B, [A,B]] = 0). If we
take A = ia ·X and B = ib ·P (ignoring that these are unbounded operators, see Appendix [6] as to why they are
unbounded), then we get:

ei(a·X+b·P) = eiℏ
a·b
2 eia·Xeib·P

We also know from Stone’s Theorem that (eib·Pψ)(x) = ψ(x+ ℏb). We therefore wish to prove:

(ei(a·X+b·P)ψ)(x) = eiℏ
a·b
2 eia·Xψ(x+ ℏb) (4)

We can show this by replacing a and b with ta and tb on the right side of (4) and show that this gives us a strongly
continuous one-parameter unitary group.
Theorem 2. For all a,b ∈ Rn, the operators Ua,b(t) ∈ L2(Rn) given by:(

Ua,b(t)ψ
)
(x) = eiℏt

2 a·b
2 eita·Xψ(x+ ℏtb) (5)

form a strongly-continuous one-parameter unitary group. Furthermore, its infinitesimal generator is:

a ·X+ b ·P (6)

on C∞
c (Rn), and is essentially self-adjoint on this domain.

Proof. Ua,b(t) is just a rotation, hence it is unitary. It is also clear that this defines a group parametrized by t. Hence
it is a unitary group. Furthermore, to show strong continuity we note that the operator is given by a product of two
continuous functions multiplied by ψ. If we first start with ψ being continuous and compactly supported we will get
that Ua,b(t)ψ is continuous at t = 0, but this subspace is dense in L2(Rn) and so we can extend to all of L2(Rn).
We now check the formula for its infinitesimal generator. Taking the derivative at t = 0 of the right side of (5) on the
dense subspace of L2(Rn), C∞

c (Rn) we get:

d

dt

∣∣∣
t=0

Ua,b(t)ψ = (ia ·X)ψ(x) + ψ′(x)(ℏb)

= ia ·Xψ − 1

i
b ·Pψ

Now by using P = −iℏ ∂
∂x . Now, since the formula for the infinitesimal generator is 1

i multiplied by this derivative
(given by Stone’s Theorem), then we get exactly (6). Finally it can be shown that (6) is self-adjoint on C∞

c (Rn) (see
[1] 9.40), and so we are done.

We now wish to return to the formula of (3) where we quantize a function f ∈ L2(Rn). Therefore Qweyl is an operator
on L2(Rn) and we will show that it must be an integral operator for some respective kernel. If we assume that this must
be the case then it is clear that the kernel of the integral of (3) using our new expression (4) will be:

eiℏ
a·b
2 eia·Xδn(x+ ℏb− y)

integrated against f̂(a,b). Rewriting (3) and using c = ℏb we get:

(3) = (2πℏ)−n
∫
R2n

f̂
(
a,

c

ℏ
)
ei

a·c
2 eia·Xδn(x+ c− y)dcda (7)

= (2πℏ)−n
∫
Rn

f̂(a, (y − x)/ℏ)ei
a·y−x

2 eia·Xda (8)

=
1

ℏn(2π)n
2

[ 1

(2π)
n
2

∫
Rn

f̂(a, (y − x)/ℏ)e
i
2a·(x+y)da

]
(9)

The integral inside the bracket can be viewed as undoing the Fourier transform of f w.r.t. the x variable, leaving us
with the partial transform of f in the p variable evaluated at the point:(x+ y

2
,
y − x

ℏ
)

Thus, the operator Qweyl(f) is an integral operator with kernel function, κf :

κf (x,y) = (2πℏ)−n
∫
Rn

f
(x+ y

2
,p)e−

i
ℏ (y−x)·pdp (10)

3



Weyl Quantization

4 L2 Theory

Let A be a self-adjoint non-negative bounded linear operator on a Hilbert space H. Then the trace of A (w.r.t. the
(en)-basis of H):

tr(A) =

∞∑
j=1

⟨ej , Aej⟩

is basis independent (which is proved in Appendix [6]). Note that this value may be infinite. Given any bounded
operator,A, (not necessarily self-adjoint) we will have thatA∗A is positive and self-adjoint. ThenA is Hilbert-Schmidt
if:

tr(A∗A) <∞
It can be further shown (in 6) that for any two Hilbert-Schmidt operators, A and B, then A∗B is trace-class, (its trace is
an absolutely convergent series that is independent of basis). We can then define the following inner product and norm
on the space of Hilbert-Schmidt operators:

⟨A,B⟩HS = tr(A∗B)

∥A∥HS =
√
tr(A∗A)

This gives us a Hilbert space on the set of Hilbert-Schmidt operators, denoted HS(H).

We will now use the following theorem involving L2(Rn).
Theorem 3. If κ ∈ L2(Rn × Rn) then for all ψ ∈ L2(Rn) the integral,

Aκ(ψ)(x) :=

∫
Rn

κ(x, y)ψ(y)dy (11)

is absolutely convergent for almost all x ∈ Rn, and Aκ(ψ) ∈ L2(Rn). Furthermore, Aκ is Hilbert-Schmidt with norm:

∥Aκ∥HS = ∥κ∥L2(Rn×Rn)

Conversely, if A is Hilbert-Schmidt on L2(Rn) then there exists unique κ ∈ L2(Rn × Rn) such that A = Aκ.

This theorem is proved in VI.23 of [2]. This theorem allows us to define the Weyl Quantization of any function in
L2(Rn).
Definition 1. For all f ∈ L2(R2n), define κf : R2n −→ C by:

κf (x,y) = (2πℏ)−n
∫
Rn

f
(x+ y

2
,p)e−

i
ℏ (y−x)·pdp (12)

and define the Weyl Quantization of f as an operator on L2(Rn), by

Qweyl(f) = Aκf

where Aκf
is given by (11) for the κf just defined.

Note that κf is not necessarily absolutely convergent, and should be thought of as the partial Fourier transform on the
momentum variable. Theorem 3 only asserts that if κf is in L2(R2n) then Aκf

is absolutely convergent, in our case we
may have to consider κf on a closed ball and then take the limit as the radius goes to infinity.

Furthermore by corollary 8.23 in Folland [[3]], we know that the Fourier transform maps the Schwartz space, S(R2n),
to itself. Now as S(R2n) is dense in L2(R2n) we may extend this to be a unitary operator to itself.

We now outline a method for computing κf at a point (x1, x2) ∈ R2n:

1. Compute the Fourier transform of f(x, p), F on the momentum variable. This gives us (Fpf)(x, ξ).

2. Evaluate (Fpf)(x, ξ) at the point x = x1−x2

2 and ξ = x2−x1

ℏ .

3. Multiply the result by (2π)−
n
2 ℏ−n.

We thus get:

κf (x
1, x2) =

1

ℏn(2π)n
2

(
Fpf

)[x1 − x2

2
,
x2 − x1

ℏ
]

(13)

Putting everything together, we get the following theorem that gives us an important equivalence (although technically,
a constant multiple of a unitary map):

L2(Rn × Rn) ∼= HS(L2(Rn))

4
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Theorem 4. The operator Qweyl is a constant multiple of a unitary map of L2(R2n) −→ HS(L2(Rn)). The inverse
map Q−1

weyl is given by,

Q−1
weyl(A)(x, p) = ℏn

∫
Rn

κ(x− ℏb
2
, x+

ℏb
2
)eib·pdb (14)

where κ is the integral kernel given to us by Theorem 3 (all such operators, A, in HS must have such unique κ).

Furthermore, for all f ∈ L2(R2n) we have Qweyl(f̄) = Qweyl(f)
∗, thus Qweyl(f) is self-adjoint if f is real-valued.

Note that we should regard (14) also as an L2 limit, as we did for (12).

Proof. Theorem (3) gives a unitary identification of L2(R2n) with HS(Rn). Then since f 7→ κf is via the partial
Fourier transform (which is a unitary map from L2(R2n) to itself) we get that Qweyl is a linear invertible map composed
with a unitary map, hence Qweyl is in fact a constant multiple of a unitary map from L2(R2n) −→ HS(L2(Rn)).
The inverse is obtained by inverting the linear identification given by Theorem (3), and undoing the partial Fourier
transform.

Finally, from our formula for κf in (13) it is clear that κf (x, y) = κf (y, x) since letting h(x) = f(x) we know that

ĥ(ξ) = f̂(−ξ), hence we get (for c a real constant):

κf (x, y) = cĥp[
x− y

2
,
y − x

ℏ
]

= cf̂p[
y − x

2
,
x− y

ℏ
] (by Fourier conjugation)

= cf̂p[
y − x

2
,
x− y

ℏ
] (c is a real constant)

= κf (y, x)

Using this and the fact (proved in Appendix that integral operators, A, formed by functions from L2(R2n) we have that
A∗ is also an integral operator with kernel function:

k∗(x, y) = k(y, x)

Thus, we have Qweyl(f) is an integral operator with kernel κf (x, y) = κf (y, x) which is the integral kernel of the
adjoint of Qweyl(f).

5 The Composition Formula

Recall that the product of a bounded operator and a Hilbert-Schmidt operator is again in HS. Since we have created a
bijection between L2(R2n) and HS(L2Rn), given any two Weyl Quantizations there must be a unique Hilbert-Schmidt
operator that is their product, we will define this to be the Moyal product and denote it with the "⋆" symbol as follows:

Qweyl(f)Qweyl(g) = Qweyl(f ⋆ g) (15)
We can describe the Moyal product via its Fourier transform:

f̂ ⋆ g(a, b) =
1

(2π)n

∫
R2n

e−
iℏ
2 (a·b′−b·a′) × f̂(a− a′, b− b′)ĝ(a′, b′)da′db′ (16)

We immediately see that limℏ→0 f ⋆ g = fg since ℏ = 0 shows us that the Fourier transform of f ⋆ g is just (2π)−n
times the convolution of the Fourier transforms of f and g, hence it is the Fourier transform of fg. Therefore the Moyal
product is a deformation of ordinary pointwise product of L2(R2n) functions. More generally, the Moyal product can
be expanded in an asymptotic expansion in powers of ℏ, as explained in Sect. 2.3 of [4].

Proof. To prove the form in (16) we will use the form of Weyl Quantization from (3) which is shown to give the same
result of our definition of Weyl Quantization given in (12) when applied to a Schwartz function (see 6). Now, we use
again the exponential multiplication rule derived in 6 to get:

Qweyl(f)Qweyl(g) = (2π)−n
∫
R2n

f̂(a,b)ei(a·X+b·P)dadb× (2π)−n
∫
R2n

ĝ(a,b)ei(a·X+b·P)dadb

= (2π)−2n

∫ ∫ ∫ ∫
e−iℏ(a·b

′−b·a′)/2ei((a+a
′)·X+(b+b′)·P ) × f̂(a, b)ĝ(a′, b′)dadbda′db′

5
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Now let c = a+ a′ and d = b+ b′ and some minor simplification/rewriting gives us:

Qweyl(f)Qweyl(g) = (2π)−n
∫ ∫ [

(2π)−n
∫ ∫

×f̂(c−a′, d−b′)ĝ(a′, b′)e−iℏ(c·b
′−d·a′)/2

]
ei(c·X+d·P )da′db′dcdd

In this form we see that we are looking at the Weyl Quantization of the function whose Fourier transform is the function
in the square brackets, which is exactly the formula (16).

Finally, since the space of Hilbert-Schmidt operators is closed under the product operation, we have that the Moyal
Product extends to a continuous binary operation on L2(R2n) and (15) holds for all f, g ∈ L2(R2n) from the standard
argument of extending a map defined on a dense subset (Schwartz Space).

6 Commutation Relations

In quantum mechanics, the commutator of two operators (divided by iℏ) plays a role similar to that of the Poisson
bracket in classical mechanics. Thus, we may naturally ask: To what extent does the Weyl quantization (or any other
quantization scheme) map Poisson brackets to commutators? The short answer is: Not always. Groenewold’s No Go
theorem tells us that no “reasonable” quantization scheme can give an exact correspondence be- tween {f, g} on the
classical side and [A,B]/(iℏ) on the quantum side. Nevertheless, we do see an exact correspondence for certain classes
of functions.
Theorem 5. If f is polynomial in x and p of degree at most 2, then for any polynomial g of arbitrary degree we have,

Qweyl({f, g}) =
1

iℏ
[Qweyl(f), Qweyl(g)]

This can be thought of as arising from the various orders of iℏ that appear in the Quantization. There is a notion of a
Moyal Bracket:

{{f, g}}moyal :=
1

iℏ
(f ⋆ g − g ⋆ f) (17)

= {f, g}+O(ℏ2)
it can be thought of as a metric of how much two observables fail to correspond with the commutator of their
quantizations. It is a deformation of the classical phase-space Poisson bracket via deformation by the Planck constant,
ℏ.
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Appendix

(A.1) The set of homogeneous polynomials, Pj , of degree j is generated by span{(ax+ by)j : a, b ∈ C}.

Proof. It is easy to see that there are j + 1 degrees of freedom in Pj , thus Pj may be identified with Cj+1. Now
let Vj be the subspace of Pj created by the span of {(ax + by)j : a, b ∈ C}, this will be a subspace of Cj+1 under
our identification, and it will be closed since everything is finite dimensional. Furthermore since we are in a finite
dimensional vector space we have that a subspace, S = (S⊥)⊥. Therefore, given a smooth curve γ(t) on S we know
that ⟨γ(t), S⊥⟩ = 0 hence given any n ∈ S⊥ we have that

0 =
d

dt
⟨γ(t),n⟩ = ⟨γ′(t),n⟩+ ⟨γ(t), 0⟩

= ⟨γ′(t),n⟩+ 0

= ⟨γ′(t),n⟩

6
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Therefore for all t ∈ R, γ′(t) ∈ (S⊥)⊥ = S. So γ′(t) ∈ S. Applying this to our current situation we will have that
smooth curves in our identification of Vj will stay within Vj . Thus, if we take the curves

γ(t) = (tx+ y)j

whose k-th derivatives evaluated at t = 0 is:

γ(k)(0) =
j!

(j − k)!
xkyj−k ∈ Vj

Therefore all of the canonical homogenous polynomial basis elements of degree j are in Vj due to Vj being a linear
subspace. Hence Vj = Pj as desired.

(A.2) Hermitian Product of Hilbert-Schmidt Operators is Trace-Class

Proof. We will show that for Hilbert-Schmidt operators A and B that:
⟨A,B⟩ = tr(A∗B)

defines an inner product that reconstruct the ∥ · ∥HS norm. Then by Cauchy-Schwarz we get that tr(A∗B) <∞.

(A.3) Multiplication Rule for Exponentials of Operators

Proof. Let A,B be bounded linear operators on a Hilbert space that commute with their commutator. We wish to prove
that:

eAeB = eA+B+ 1
2 [A,B]

We will start with a few intermediate results. Namely, that for any bounded linear operators that commute, C,D we
have that:

eC+D = eCeD (18)
note that this is from the fact that since the operators commute we may apply the binomial theorem to each term in the
definition of the exponential of the operator C +D. We also need a fact that:

d

dt
etA = AetA = etAA

This follows from the power series definition of the exponential of an operator and that any operator commutes with
itself. Now applying this fact to:

d

dt
e−tBAetB = e−tBABetb −Be−tBAetb

= e−tB [A,B]etB

= [A,B] (etB commutes with [A,B]) (19)
We may now prove the desired statement. We will show that:

etAetB = etA+tB+ t2

2 [A,B]

which gives us the result when t = 1. since [A,B] commutes with both A and B by assumption, we may apply (18) to
rewrite as:

etAetBe−
t2

2 [A,B] = et(A+B) (20)
Let α(t) denote the LHS. Taking its derivative we get (and using that [A,B] commutes with everything):

∂α

∂t
= etAAetBe−

t2

2 [A,B] + etAetBBe−
t2

2 [A,B] − t[A,B]etAetBe−
t2

2 [A,B]

Now from integrating (19) we get that:
e−tBAetB = A+ t[A,B]

multiplying this result by etAetB we get that etAAetB = etAetB(A+ t[A,B]). We may therefore rewrite d
dtα(t) as:

∂α

∂t
= etAetB(A+ t[A,B])e−

t2

2 [A,B] + etAetBBe−
t2

2 [A,B] + etAetBBe−
t2

2 [A,B](−t[A,B])

= α(t)
(
A+ t[A,B] +B − t[A,B]

)
= α(t)(A+B) (21)

This differential equation has a unique solution given by:

α(t) = α(0)et(A+B) = Iet(A+B) = et(A+B)

This is exactly (20), and so we are done.

7
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(A.4) Position and Momentum Operators are Unbounded

Proof. We will start with the position operator: X : dom(X) −→ L2(Rn) given by ϕ(x) 7→ xϕ(x). It is true that for
all n ∈ N that χ[n,n+1] ∈ dom(X). Yet, these functions all have ∥ · ∥2 = 1, while

∥Xχ[n,n+1]∥2 =

∫ n+1

n

x2dx =
(n+ 1)3 − n3

3
= n2 + n+

1

3

which goes to infinity as n does.

For the momentum operator, we instead for simplicity show that the derivative operator, D, is unbounded on its domain.
Note that the function:

fn(x) =
√
ne−n

2x2

is in L2 since after using u = nx
√
2 we get:∫

R
fn(x)

2dx =

∫
R
ne−2n2x2

dx

=
1√
2

∫
R
e−u

2

du

=

√
π

2

Now after applying D to fn we get: f ′n(x) = −n22xfn, and so computing:

∥Dfn∥2 =

∫
R
f ′n(x)

2dx

=

∫
R
4n4x2f2ndx

= n3
∫
R
x(4xn2e−2n2x2

)dx

Letting u = x and v = e−2n2x2

we get:

∥Dfn∥2 = n3
[
uv

∣∣
R −

∫
R
−e−2n2x2

dx
]

= 0 + n2
∫
R
ne−2n2x2

dx

= n2
√
π

2

Thus, we get that that this goes to infinity as n does, and so the derivative operator (and hence the momentum operator)
is unbounded.

(A.5) Trace is Independent of Basis for Positive Linear Operators on Hilbert Spaces

Proof. It is clear that for non-negatives numbers, (xj,k):

∞∑
j=1

∞∑
k=1

xj,k =

∞∑
k=1

∞∑
j=1

xj,k (22)

Let A be a positive self-adjoint linear operator on a separable Hilbert space, H, with orthonormal bases (en)∞n=1 and
(fn)

∞
n=1. Then for either basis we have by Parseval’s Identity that for any x ∈ H:

∞∑
n=1

|⟨x, en⟩|2 = ∥x∥2

8
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Now by definition of the trace w.r.t. the (en) basis we have:

tre(A) =

∞∑
n=1

⟨en, Aen⟩

=

∞∑
n=1

∥
√
Aen∥2

Since A is a positive operator, it has a square root operator (which is self-adjoint as well), and so

⟨Av, v⟩ = ⟨
√
A(

√
Av), v⟩ = ⟨

√
Av,

√
Av⟩ = ∥

√
Av∥2 (23)

Now by Parseval’s Identity we get:

tre(A) =

∞∑
n=1

∞∑
k=1

⟨
√
Aen, fk⟩2

=

∞∑
k=1

∞∑
n=1

⟨
√
Aen, fk⟩2 by (22)

=

∞∑
k=1

∞∑
n=1

⟨en,
√
Afk⟩2 (

√
A is self-adjoint)

=

∞∑
k=1

∥
√
Afk∥2 (Parseval’s Identity)

=

∞∑
k=1

⟨Afk, fk⟩ by (23)

= trf (A)

(A.6) Adjoint of Integral Operators

Proof. Let T on L2(R) be a bounded integral operator with kernel, κ(x, y). Then:

⟨Tf, g⟩ =
∫
R
(Tf)(y)g(y)dy

=

∫
R

∫
R
κ(x, y)f(x)g(y)dxdy

=

∫
R

∫
R
κ(x, y)f(x)g(y)dydx (Fubini’s since T is bounded)

=

∫
R
f(x)

∫
R
κ(x, y)g(y)dydx

=

∫
R
f(x)⟨κx, g⟩dx

=

∫
R
f(x)⟨κy, g⟩dx

=

∫
R
f(x)

∫
R
κ(x, y)g(y)dydx

Hence, let T ∗ be the integral operator with kernel κ(y, x) (integration against x). Then we have that ⟨Tf, g⟩ = ⟨f, T ∗g⟩
for all f, g ∈ L2(R). This kernel gives us a bounded operator by Cauchy-Schwarz since T is bounded of course.

(A.7) Schwartz Function Quantization

Proof. Let f be a Schwartz function in L2(R2n). Then it also has a Fourier transform, f̂ . Then we have defined

Qweyl(f) =
1

(2π)n

∫
R2n

f̂(a, b)ei(a·X+b·P )dadb (24)
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Weyl Quantization

As X and P are operators, we may interpret this definition as a Bochner integral that maps into B(L2(Rn)). We also
know that Bochner integrals commute with linear maps. Let Λϕ,ψ(A) = ⟨ϕ,Aψ⟩ be a bounded linear functional on
B(L2(Rn)). We also know that from (9) that κf is kernel for (23) as an integral operator and is the partial Fourier
transform of f (on the momentum variable) evaluated at a translated point, denote this operation by P . Then the
definition of Weyl Quantization given in definition (1) gives us:

Aκf
(ψ) = ⟨ψ, κf ⟩

= ⟨ψ, Pf⟩
= P ⟨ψ, f⟩ (by Bochner Property)
= (23)
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